On Generalized Knot Groups
نویسندگان
چکیده
Generalized knot groups Gn(K) were introduced first by Wada and Kelly independently. The classical knot group is the first one G1(K) in this series of finitely presented groups. For each natural number n, G1(K) is a subgroup of Gn(K) so the generalized knot groups can be thought of as extensions of the classical knot group. For the square knot SK and the granny knot GK, we have an isomorphism G1(SK) ∼= G1(GK). From the presentations of Gn(SK) and Gn(GK), for n > 1, it seems unlikely that Gn(SK) and Gn(GK) would be isomorphic to each other. We are able to show that for many finite groups H , the numbers of homomorphisms from Gn(SK) and Gn(GK) to H , respectively, are the same. Moreover, the numbers of conjugacy classes of homomorphisms from Gn(SK) and Gn(GK) to H , respectively, are also the same. It remains a challenge to us to show, as we would like to conjecture, that Gn(SK) and Gn(GK) are not isomorphic to each other for all n > 1.
منابع مشابه
The 2-generalized Knot Group Determines the Knot
Generalized knot groups Gn(K) were introduced independently by Kelly (1991) and Wada (1992). We prove that G2(K) determines the unoriented knot type and sketch a proof of the same for Gn(K) for n > 2. 1. The 2–generalized knot group Generalized knot groups were introduced independently by Kelly [5] and Wada [10]. Wada arrived at these group invariants of knots by searching for homomorphisms of ...
متن کاملAlexander-Lin twisted polynomials
X.S. Lin’s original definition of twisted Alexander knot polynomial is generalized for arbitrary finitely presented groups. J. Cha’s fibering obstruction theorem is generalized. The group of a nontrivial virtual knot shown by L. Kauffman to have trivial Jones polynomial is seen also to have a faithful representation that yields a trivial twisted Alexander polynomial.
متن کاملCocycle Knot Invariants from Quandle Modules and Generalized Quandle Cohomology
Three new knot invariants are defined using cocycles of the generalized quandle homology theory that was proposed by Andruskiewitsch and Graña. We specialize that theory to the case when there is a group action on the coefficients. First, quandle modules are used to generalize Burau representations and Alexander modules for classical knots. Second, 2-cocycles valued in non-abelian groups are us...
متن کاملgH-differentiable of the 2th-order functions interpolating
Fuzzy Hermite interpolation of 5th degree generalizes Lagrange interpolation by fitting a polynomial to a function f that not only interpolates f at each knot but also interpolates two number of consecutive Generalized Hukuhara derivatives of f at each knot. The provided solution for the 5th degree fuzzy Hermite interpolation problem in this paper is based on cardinal basis functions linear com...
متن کاملStably Irreducible Surfaces in S
It is shown by example that there are embedded surfaces in S which cannot be decomposed as the connected sum of a knotted surface of lower genus and an unknotted surface. In addition it is shown that there are distinct embeddings of surfaces into S such that the complements of the surfaces have the same fundamental groups. The results are generalized to a stable setting. All groups that appear ...
متن کامل